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1 Introduction

There is a large group of natural computational problems that have a time
complexity that is exponential or worse. For many of these problems however
there are techniques that can be used to dramatically lessen the time needed to
�nd an (acceptable) solution, either by approximating the solution or restricting
the problem space. This survey describes a technique that is based on the second
approach, namely Fixed-Parameter Tractability.

De�nition. A �xed-parameter tractable problem is a parameterized
problem where for each �xed parameter value y the problem is solv-
able in time O(nc) where c is a constant independent of the param-
eter y. [DF92]

The main body of this survey consists of three parts. Section 2 gives an explana-
tion of the workings of FPT, its history and main research areas. Section 3 gives
a number of real-world applications of FPT and section 4 gives a conclusion on
the current state of FPT and some research frontiers.

The goal of this survey is to provide the reader with an introduction to FPT,
give an idea of its strengths and weaknesses and provide links to more in-depth
information. It is assumed that the reader has basic knowledge of complexity
theory and algorithms.

2 Fixed-parameter tractability

The main reason for the research of Downey & Fellows on FPT was to �nd a
way to solve NP-complete problems in certain cases. The idea is that since NP-
complete problems are often only truly intractable for a small range of parameter
values, the �xing of those parameter values could lead to a tractable problem.

The de�nition Downey and Fellows use for parameterized problems:

De�nition. A parameterized problem is a set L ⊆ Σ∗ × Σ∗ where
Σ is a �xed alphabet.

For a parameterized problem L and y ∈ Σ∗ we write Ly to de-
note the associated �xed-parameter problem (y is the parameter)
Ly = {x|(x, y) ∈ L}. [DF92]

In other words, L is a problem with at least one free parameter, Ly is the problem
with that parameter �xed. A problem L is called �xed-parameter tractable if L
is in NP, but Ly is in P.

Some problems in the class of NP-complete problems are FPT, while others are
not. This leads to the conjecture that there exists a hierarchy within NP, which
is described in more detail in Section 2.3.
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2.1 History

There is very little to be found on the history of FPT. but in [Slo01] Christian
Sloper pieced together its probable development, of which the following is an
extract.

The history of FPT most likely stems from the Robertson-Seymour theorems
on graph minors.

De�nition. A graph H is a minor of graph G, H ≤m G, if a graph
isomorphic to H can be obtained by repeatedly contracting edges of
a subgraph of G. Contracting edge (u, v) means identifying u and v
as a single vertex maintaining all neighbours. [Slo01]

Robertson and Seymour provedWagner's Conjecture, which states that for every
in�nite set of graphs G1, G2, . . . there exists i < j such that Gi ≤m Gj . The
proof will not be described here, but in it they used an algorithm for �nding tree-
decompositions of width ≤ k for �xed values of k. The original time complexity
of this algorithm was O(nk+2), but by using a divide-and-conquer approach they
created an algorithm of time complexity O(n2).

The step from O(nO(k)) to O(nO(1)) drew the interest of Fellows and Langston,
who observed that a similar algorithm could be created for Vertex Cover. Follow-
ing this, Fellows and Downey started exploring the possibilities of Parameterized
Complexity and that is where the �eld of FPT truly began.

2.2 Fixed-Parameter Tractability

As with NP-complete problems, the distinction between FPT problems and
non-FPT problems is made using reductions; if a parameterized problem P
is reducible to another parameterized problem P ′, and P is �xed-parameter
tractable, then P ′ is also �xed-parameter tractable. [DF92]

Various algorithms have been shown �xed-parameter tractable, such as deter-
mining of a �xed graph that another graph is a minor isomorphic of this graph,
determining the existence of an isomorphic subtree for a tree of �xed width.
[DF92]

Other algorithms don't have the �xed-parameter tractability property and can
only be solved in exponential time by exhaustively trying all possible solutions.
An example is the Dominating Set Problem: determining whether there exists
a dominating set of size k or less in a graph G. A dominating set of size k of a
graph G = (V,E) is a subset D of V of k vertices such that each vertex not in
D is joined to at least one member of D by an edge in E. The k-Dominating
Set Problem is only solvable in O(nk+1) time. [DF92]
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2.3 W-Hierarchy

As said in the previous paragraph, there is a group of problems that are not
Fixed Parameter tractable. There is no concrete proof for this (such a proof
would imply that P 6= NP , which still isn't o�cially proven), but the existence
of this group is made extremely plausible by using a completeness program.

The completeness program works just like the proof for the existence of the
group of NP problems. There is a base problem for which the existence of a
FPT solution is extremely unlikely and other problems can be reduced to this
problem. The di�erence between NP and Fixed Parameter Intractability is that
there is a clear hierarchy between di�erent intractable parameterized problems,
called the W-Hierarchy. This hierarchy was �rst introduced by Fellows and
Downey in [FD98].

To explain the W-Hierarchy we will need a number of de�nitions.[DF94] We
decided to copy these integrally for easy reading:

De�nition. A Boolean circuit is of mixed type if it consists of cir-
cuits having small gates and large gates.

De�nition. Small gates: not, and and or gates with bounded fan-
in.

De�nition. Large gates: not, and and or gates with unrestricted
fan-in.

De�nition. The depth of a circuit C is de�ned as the maximum
number of gates (small or large), not counting not gates, on an
input-output path in C.

De�nition. The weft of a circuit C is de�ned as the maximum
number of large gates, on an input-output path in C.

De�nition. A family of circuits F has bounded depth if there is a
constant h such that every circuit in the family F has depth at most
h.

De�nition. We say that F has bounded weft if there is a constant
t such that every circuit in the family F has weft at most t.

De�nition. Let F be a family of decision circuits. We allow that F
may have many di�erent circuits with a given number of inputs. To
F we associate the parameterized circuit problem LF = {(C,K) :
C ∈ F and C accepts an input vector of weight k}
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De�nition. A parameterized problem L belongs to W [t] if L uni-
formly reduces to the parameterized circuit problem LF (t,h) for the
family F (t, h) of mixed type decision circuits of weft at most t and
depth at most h, for some constant h.

Of all these de�nitions the one of most interest to us is the last one, since it
is this de�nition that allows us to describe a hierarchy on the complexity of
parameterized problems.

We will �rst describe a problem of type W [1], speci�cally the problem of Short
Turing Machine Computation. This problem is especially useful since it
provides us with a very strong indication that problems in W [1] are �xed pa-
rameter intractable.

De�nition. Short Turing Machine Computation: Given a
Nondeterministic Turing Machine M , a string x and a parameter
k, does M have a length k computation path accepting x.

The proof that Short Turing Machine Computation can be uniformly
reduced to a mixed type decision circuit of weft at most 1 and therefor is in
class W [1] is described in [FD98]. We will not repeat that proof here, but
will discuss a very important implication. Since the Short Turing Machine

Computation problem has little to no structure that can be used to �nd an
e�cient solution, it is widely regarded to be �xed parameter intractable. Since
the complexity of problems that are in W [t], with t > 1, is at least that of Short
Turing Machine Computation, this makes a strong case for the conjecture
that all problems in W [t] are �xed parameter intractable.

This leads us to the �nal de�nitions of the W-Hierarchy:

De�nition. W [P ]: the class of circuits obtained by having no re-
striction on depth, i.e. P -size circuits.

De�nition. W [SAT ]: boolean circuits of P -size.

De�nition. The W-Hierarchy is the union of the W [t] classes to-
gether with the classes W [SAT ] ⊆ W [P ].

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT ] ⊆ W [P ]
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3 Applications

3.1 Introduction

Now that the basic workings of FPT have been explained, it is time to give a
number of real-world applications. This section will focus on four areas where
FPT is or can be used, speci�cally graph theory, satis�ability, cryptography and
gene research.

It will contain algorithms nor proofs and the topics are only lightly touched
upon. For detailed information you are advised to read the referenced papers.

3.2 Graph theory

Graph theory studies the properties of graphs. Graphs are used in many �elds:
in cartography, graphs are the generalization of a country map. In telecommu-
nications, they are the generalization of the used network. Logistics use graphs
to abstract real-world distances between destinations.

Many computational problems are solved using graph theory. However, certain
types of problems cannot be solved and are part of the NP-hard problems. The
Traveling Salesman Problem (TSP) is discussed here. Other famous NP-hard
problems are Minimum Weight Triangulation Problem (MWT), Hamiltonian
Path and Vertex Cover. MWT is not discussed in detail here, but there is a
�xed-parameter algorithm[HO04] for it which runs in O(6kn5 log n) time, where
n is the total number of points and k is the number of inner points.

3.2.1 Traveling Salesman Problem is Fixed-Parameter Tractable

One of the most famous NP-hard problems in graph theory is TSP. An exhaus-
tive search �nding the shortest path through a set of points costs O(n!) time. A
dynamic programming solution will get the running time within the exponential
range: O(n22n).

Four researchers, De��neko, Ho�mann, Okamoto and Woeginger discovered that
TSP is FPT if most of the points are arranged in convex position. In their article
`The Traveling Salesman Problem (TSP) with Few Inner Points' they claim
O(k!kn) and O(2kk2n) running time for the two algorithms they give (where n
is the number of points and k is the number of inner points). [DHOW04]

First some de�nitions De��neko et al. use: Inner points of a point set P are those
points that lie inside the convex hull of P . A tour on P is a linear order of the
points on P . [DHOW04]
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First algorithm The �rst algorithm, with running time O(k!kn) has space
complexity O(k). Essentially, it will �rst �nd a linear order on the inner points
(π) and a cyclic order on the outer points (γ). Then it will try to �nd a shortest
tour on P respecting the orders π and γ using dynamic programming.

The dynamic programming phase will construct an array F1[i, j, m], where i is
the points pi in the outer points set, j is the point qj in the inner points and
the index m is the position (Inn or Out). The value of F1[i, j, m] represents the
length of a shortest path on {p1, . . . , pi} ∪ {q1, . . . , qj}. The exact conditions
which are satis�ed can be found in [DHOW04].

The length of a shortest tour can now be computed as:

min {F1[n− k, k,Out] + d[pn−k, p1], F1[n− k, k, Inn] + d(qk, p1)}

A recursive algorithm can be used to calculate F1 for every i, j and m.

Second algorithm The second algorithm has a better running time (O(2kk2n))
at the expense of a larger space complexity (O(2kkn)). Like with the �rst al-
gorithm, it will �rst �nd a linear order on the inner points (π), but will then
immediately start the dynamic programming.

The array which stores information now gets F2[i, S, r], i is the same as with
the �rst algorithm, S is a subset of the inner points of P and r is a point out of
the inner points.

F2[i, S, r] is to be interpreted as the length of the shortest path on {p1, . . . , pi}∪S
that satis�es the conditions in [DHOW04].

The length of a shortest tour is then:

min {F2[n− k, Inn(P ), r] + d(r, p1)|r ∈ Inn(P ) ∪ {pn−k}}

Conclusion The intuition that �Fewer inner points make the problem easier
to solve�[DHOW04] is correct.

3.3 Proving (un)satis�ability

Proving (un)satis�ability of propositional formulas has always been a point of
much interest to algorithm researchers. It is therefor no surprise that there are
a number of di�erent approaches to this problem that use FPT.

One group of �xed parameter solutions to the satis�ability problem is based
on structural decompositions, which means that they create a graph from the
propositional formula. Possible parameters that can be �xed are the tree-width,
branch-width or clique-width of the resulting graph. These approaches are all
useful for a subset of propositional formulas and are relatively well researched.
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One relatively new approach is based on the maximum de�ciency of a minimal
unsatis�able CNF formula F , as described in [Sze03].

De�nition. A formula is minimal unsatis�able if it is unsatis�able,
but omitting any of its clauses makes it satis�able.

De�nition. The de�ciency of F is: δ(F ) := m− n, where m is the
number of clauses and n is the number of variables.

The class of minimal unsatis�able formulas with de�ciency k is denoted by
MU(k).

Original algorithms to decide whether a formula is in MU(k) had a time complex-
ity of nO(k), which means that even for small k the algorithms are impractical
for large inputs.

In [Sze03] Stefan Szeider shows that MU(k) is �xed-parameter tractable and
gives an algorithm with time complexity O(2kn4), bringing the problem into
the realm of FPT.

A very useful byproduct of the algorithm is a general algorithm which runs in
time O(2kn3) on instances F , if the maximum de�ciency over all subsets F ′ ⊆ F
is at most k. In other words, if for each subset of the CNF formula F the number
of clauses m is at most k bigger than the number of literals n, then a satisfying
assignment can be found in polynomial time.

The main reason that this speci�c algorithm is so interesting is that it is in-
comparable with the approaches based on structural decompositions. There are
problems with bounded maximum de�ciency but arbitrarily large tree, branch
or clique-width and vice versa.

Another point of interest is that maximum de�ciency can be calculated in poly-
nomial time by matching algorithms, whereas computation of tree/branch-width
is NP-hard and it is unknown whether the recognition of graphs with �xed
clique-width can be done in polynomial time.

3.4 Cryptography

A particular �eld of interest in complexity theory and especially FPT is the
�eld of cryptography. The reason for this is that, opposed to most other �elds,
cryptography relies on the fact that some problems are inherently hard to solve.
While this is true in theory, real world implementations are forced to restrict
certain parameters of the problem, which provides a foothold for solutions based
on Fixed-Parameter Tractability (FPT).

This section is based on an article by Fellows and Koblitz [FK93]. For one, the
article describes an algorithm that uses a combination of FPT and randomiza-
tion to determine whether an n-digit number has a prime divisor less than or
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equal to nk in expected time f(k)n3. This can be used as an aid in �nding the
the prime numbers used in for example RSA encryption.

Fortunaltely for the �eld of cryptography, there also is a large number of prob-
lems relevant to cryptography for which even the parameterized versions have
a exponential running time. Examples are k-Subset Sum, k-Perfect Code and
k-Subset Product which are all hard for W [1].

Finally we will describe two open questions that could have direct real-world
consequenses if they should prove to be �xed parameter tractable. Both are
described in greater depth in [FK93].

The �rst is the problem of the Bounded Hamming Weight Discrete Log-

arithm. Since there have been some suggestions to use exponents of faily small
Hamming weight to speed up crypto systems, �nding that this problem is �xed
parameter tractable could be a big security breach for these systems. Some
further investigation has shown that as of 2001 this problem was still open.

The second problem is the Bounded Hamming Weight Elliptic Curve

Discrete Logarithm. Proposals for using elliptic curve cryptosystems in
smart cards have included the idea of placing an upper bound on the Hamming
weight of certain elements of the algorithm. As with the previous problem,
�nding a FPT algorithm could mean a possible security breach in those cards.
As of 2006 we haven't been able to �nd any proof or refutation of the �xed
parameter tractability of this problem.

3.5 Gene research

In genetics, many computational problems arise, mostly combinatorial. One
of these is `Perfect Path Phylogeny Haplotyping with Missing Data', which is
FPT.[GNT04]

Since the reader is not expected to have a background in biology, some terms
probably need explanation.

A haplotype is a variation in the DNA of chloroplasts or mitochondrions (these
are certain elements in a cell). It is used in phylogenetics to decide on the origin
of a certain individual.

Phylogeny is �the origin and evolution of a set of organisms, usually a set of
species.�1

Haplotyping via perfect phylogeny �nally is �a method for haplotype inference
where it is assumed that the (unknown) haplotypes underlying the (observed)
genotype data can be arranged in a genetic tree in which each haplotype results
from an ancestor haplotype via mutations.�[GNT04]

For computer scientists, it is good to know that the problem can be stripped
of its biological context: Translate haplotypes to binary strings, genotypes to

1from Wikipedia page Phylogenetics
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trinary strings. The genotype resulting from two haplotypes has a 0-entry or 1-
entry at those positions where both haplotypes agree (the value of the genotype-
entry is then equal to that of the haplotypes' position) and a 2-entry if they
don't.[GNT04]

What remains is a purely combinatorial problem, citing [GNT04]:

A genotype matrix A admits a perfect phylogeny if there exists a
rooted tree T , called perfect phylogeny, such that:

1. Each column of A labels exactly one edge of T .

2. Every edge of T is labeled by at least one column of A.

3. For each row r of A there are two nodes in T (possibly identical)
labeled r′ and r′′. The labels r′ and r′′ are called haplotype
labels.

4. For every row r of A the set of columns with value 2 in this row
forms a path p in T between r′ and r′′. The set of columns with
value 1 in this row forms a path from T 's root to the top-most
node on the path p.

The Perfect Phylogeny Haplotyping Problem (given a genotype matrix A, does
A admit a perfect phylogeny?) is solvable e�ciently, as is the Perfect Path
Phylogeny Haplotyping Problem (given a genotype matrix A, does A admit a
perfect phylogeny that is a path?). However, adding missing data complicates
the problems into intractability.[GNT04]

Perfect Path Phylogeny Haplotyping with Missing Entries (PPPH) is NP-complete.
To �nd FPT properties, Gramm, Nieho� and Tantau turned to the biological
constraints on the problem and found three possible assumptions and gave mo-
tivations for them:

• Focus on path phylogenies (instead of the general case).

• Focus on directed phylogenies.

• Assume that for each single nucleotide polymorphism site only a small
fraction of the information is missing.

The solution to PPPH is a two-stage algorithm. The �rst phase collapes multiple
columns in the matrix with missing data to one `consensus' column. If a perfect
phylogeny can be found for this new matrix, there is also one for the original.
This phase takes O(4km3n) time, where n×m is the size of the genotype matrix
A, and k is the number of missing entries per column.[GNT04]

The second phase of the algorithm involves dynamic programming. For each
remaining column the missing data is then tried to be resolved. The dynamic

programming phase takes O(3O(k3·6k·k!) · n2) time.[GNT04]
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Conclusion The complete algorithm runs in O(4km3n+3O(k3·6k·k!) ·n2) time,
where n×m is the size of the genotype matrix A, and k is the number of missing
entries per column, which makes it tractable for very small values of k.[GNT04]

The next step of Gramm's et al. research will be to remove the focus on directed
phylogenes and try to get a �xed-parameter tractable version with undirected
phylogenes.[GNT04]

4 Conclusion

FPT is used in many areas of computation. NP-hard problems can sometimes
be solved e�ciently when one has some knowledge about the input, for instance
in graph theory the depth of a tree, in networking the number of processors in a
parallel processing system, or with formula satis�ability the number of variables
in a logical formula.

The topics dealt with in this survey paper are only lightly touched upon and
the actual algorithms and proofs aren't given. The �eld of FPT is huge and the
examples given are but the tip of the ice berg of �xed-parameterized problems.
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